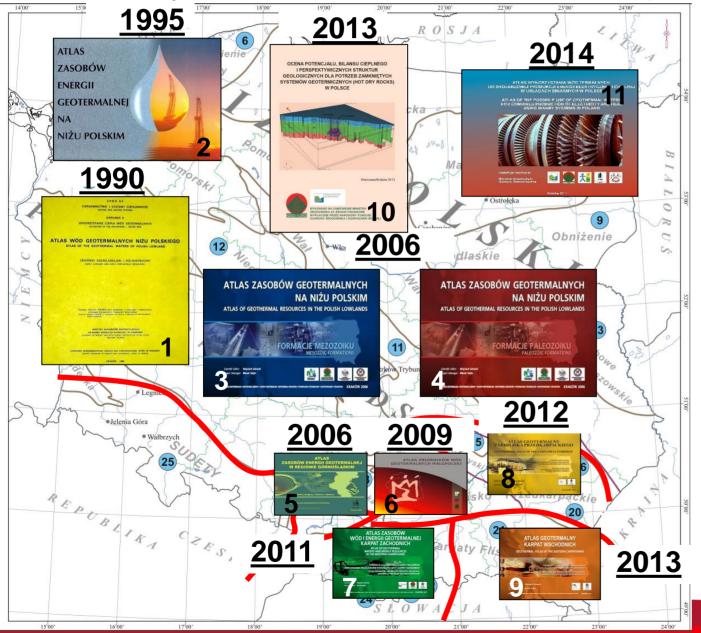


Geothermal resources in Poland

Dr. Anna Sowiżdżał Msc Eng. Marek Hajto

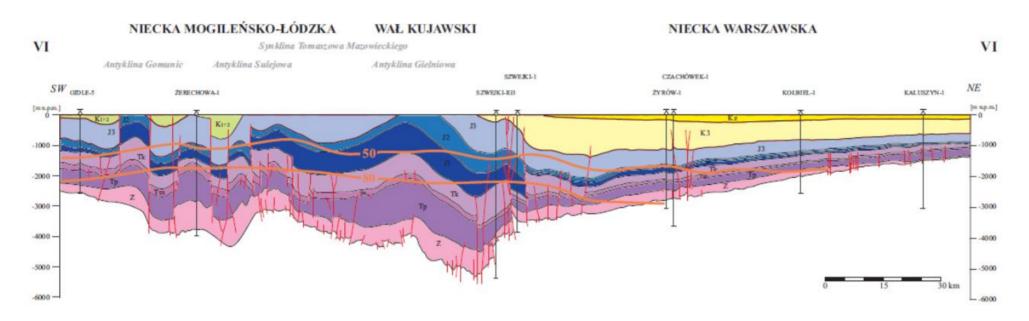
AGH University of Science and Technology,
Faculty of Geology, Geophysics and Environmental Protection
Department of Fossil Fuels



Polish Geothermal Society

Good regional geothermal recognition of Poland

summary in "Geothermal Atlasses" and other works (for over 80% of Polish area)

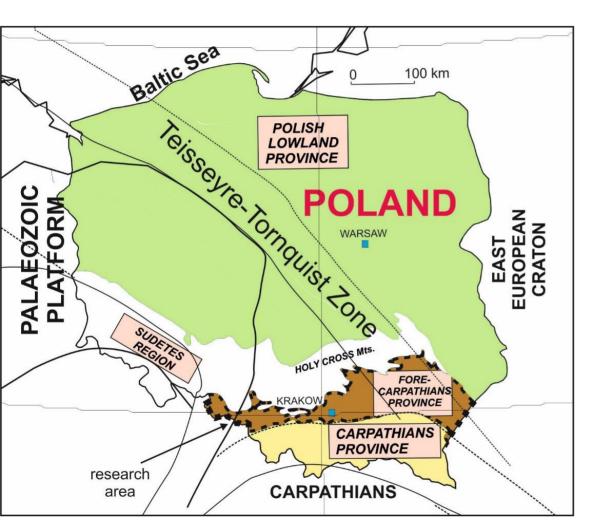


Scientific and practical aspects

- evaluation of geothermal resources and potential of their use for different purposes
- ✓ indicating prospective areas for geothermal water and/or energy utilization
- structural and parametric characteristics of geothermal reservoirs
- hydrogeological conditions of the geothermal waters occurrence
- ✓ recognizing of the geothermal potential for binary installations (11)
- recognizing the geothermal potential for Enhanced Geothermal System (10)

Low- temperature geothermal systems

Geological cross-section through Poland Great share of sedimentary rocks - potential and proven geothermal reservoirs


Domination of sedimentary formations (Mesozoic mostly)

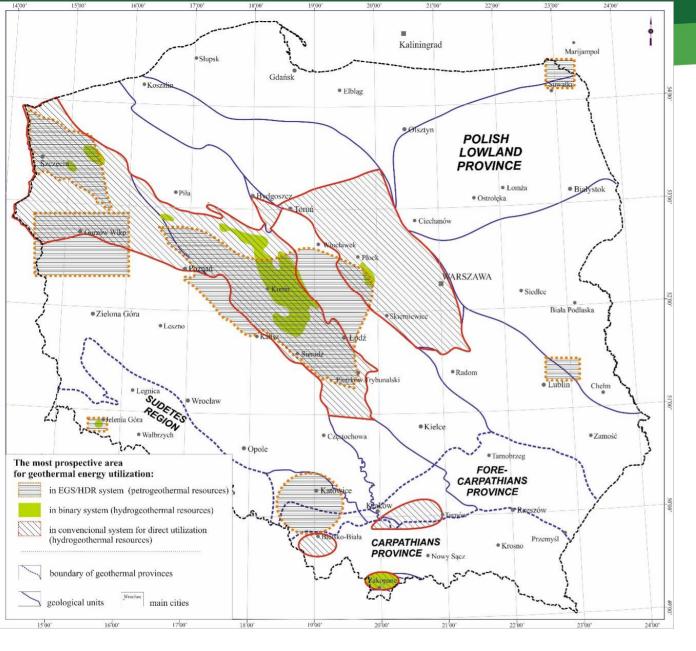
- √ Large thickness (to 7-12 km)
- ✓ Significant share of carbonates and sandstones main reservoir rocks
- ✓ Crystalline rocks the Precambrian platform (NE-Poland), the Sudetes region (SW-Poland)

www.agh.edu.pl

Main geothermal parameters

- ✓ Depths of exploited aquifers: 1 3.5 km
- ✓ Water temperatures: 20 97°C
 (locally >100°C waters found)
- ✓ Water mineralization (TDS): 0.4 -150 g/dm³
- ✓ Water flow rates/well:
 several m³/h 550 m³/h

www.agh.edu.pl


Rich low-enthalpy potential in geothermal provinces

- ✓ The largest in area and the most perspective province in Poland
- ✓ Two geothermal reservoirs have commercial significance:
- Lower Cretaceous
- Lower Jurassic
- ✓ In many areas of the Polish Lowlands utilization of geothermal waters with relatively high temperatures (even exceeds 100°C) and high capacities (even 300 m³/h) is real
- ✓ Geothermal reservoirs of Miocene and Mesozoic-Paleozoic basement
- ✓ The occurrence of thermal water resources and geothermal energy in the Polish part of the Carpathians is associated primarily with the area of Inner Carpathians the Podhale basin
- ✓ **Outher Carpathians** due to the complicated geological structure are characterized by diverse of hydrogeothermal conditions locally use of geothermal waters for recreation and balneotherapy is possible
- ✓ The only geothermal province in Poland where the occurrence of geothermal water is associated with crystalline rocks
- √ Favorable thermal conditions (Cieplice)
- ✓ The current use of waters associated with balneotherapy and recreation

5/12

(based on: Górecki (ed.) et al., 1990 – 2013; Bujakowski, Tomaszewska (eds.), 2014; Wójcicki, Sowiżdżał, Bujakowski (eds.), 2013; Sowiżdżał, 2018)

The most prospective area for geothermal energy utilization in Poland

- ✓ Geothermal waters can be used in a wide range for heating purposes (individual and communal) and others purposes: recreation, balneotherapy, agriculture, aquaculture, ecological food production etc.
- ✓ Locally binary electricity generation (CHP)
- ✓ Shallow geothermal (heat pumps a wide range of applications for heating and cooling)

www.agh.edu.pl

POLAND - GEOTHERMAL CONDITIONS

- ✓ In Poland low temperature geothermal resources occurs
 ✓ The geothermal reservoirs are built of:
 □ sedimentary rocks mostly Mesozoic sandstones and carbonates
 □ crystalline rocks the Precambrian platform (NE-Poland), the Sudetes region (SW-Poland)
 ✓ The most prospective aqufiers:
 □ Polish Lowland: Lower Jurassic and Lower Cretaceous aquifers
 □ Podhale: Middle Triassic/Eocene aquifers
- ✓ Hydrogeothermal resources are associated with waters of different temperatures from 20 to over 100°C
- ✓ Petrogeothermal resources associated with sedimentary, volcanic and crystalline rocks with temperature above 150°C

Project GeoPLASMA-CE

Shallow Geothermal Energy Planning, Assessment and Mapping Strategies in Central Europe

Opracowanie zasad planowania, strategii wykorzystania oraz metod oceny i wykonywania map potencjału płytkiej geotermii w Europie Środkowej

Geologische Bundesanstalt

geoENERGIE

Bundesverband

Geothermie

Funding programme: Interreg CE

Priority axis: Cooperating on low-carbon strategies in CENTRAL EUROPE;

Running time: 07/2016 – 06/2019;

Project partners: 11 (AT, DE, PL, CZ, SK, SI) **6** Geological survey organizations, **1** University (PL), 1 City administration (SI), 1 Interest group (DE), **2** SMEs (DE);

Total budget: EUR 2.9 Mio

Mission and vision of GeoPLASMA-CE:

Foster the use of shallow geothermal energy use in Central Europe by:

- ✓ Transferring and harmonizing knowledge;
- ✓ Connecting experts and stakeholders in Central Europe;
- ✓ Developing state-of the art methods and tools;
- ✓ Demonstrating concepts in pilot areas;
- ✓ Interacting with stakeholders for the inclusion of SGE. 8/12

Many thanks for kind attention!

Dr. Anna Sowiżdżał

AGH University of Science and Technology

Faculty of Geology, Geophysics and Environmental Protection

Department of Fossil Fuel

ansow@agh.edu.pl